
Sensors and Actuators
in Python

Hans-Petter Halvorsen

https://www.halvorsen.blog

Exemplified by using NI USB-6008 I/O Module

https://www.halvorsen.blog/documents/programming/python/

Free Textbook with lots of Practical Examples

https://www.halvorsen.blog/documents/programming/python/

Additional Python Resources

https://www.halvorsen.blog/documents/programming/python/

https://www.halvorsen.blog/documents/programming/python/

• DAQ and I/O Modules

• NI-DAQ

• Sensors and Actuators

• Python Examples
–LED, TMP36 Temperature, Thermistor,

Push Button/Switch, Light Sensor

Contents

Note! The Python Examples provided
will work for all NI-DAQ Devices using

the NI-DAQmx Driver, which is
several hundreds different types. We
will use the NI USB-6008 DAQ Device

or I/O Module as an Example

Equipment

USB-6008 (or similar
DAQ Device)

Breadboard

TMP36

Thermistor

Wires

LED

Resistors

Push Button Light Sensor

NI USB-6008
We will use NI USB-6008 in our examples I/O Pins

http://www.ni.com/en-no/support/model.usb-6008.html

http://www.ni.com/en-no/support/model.usb-6008.html

NI DAQ Device with Python
How to use a NI DAQ Device with Python

NI DAQ
Hardware

NI DAQmx

Python

nidaqmx Python Package

In this Tutorial we will use NI TC-01 Thermocouple

Hardware Driver Software

Python Programming Language

Python Application Your Python Program

Python Library/API for Communication with NI DAQmx Driver
Free

Free

Free

DAQ System

Analog Signals

Digital Signals

Sensors

Analog IO

Digital IO

Application

Software

Hardware DriverUSB, etc.

Input/Output Signals Data Acquisition Hardware

(Analog/Digital
Interface) PC

• NI-DAQmx is the software you use to communicate
with and control your NI data acquisition (DAQ) device.

• NI-DAQmx supports only the Windows operating
system.

• Typically you use LabVIEW in combination with NI DAQ
Hardware, but the NI-DAQmx can also be used from C,
C#, Python, etc.

• The NI-DAQmx Driver is Free!
• Visit the ni.com/downloads to download the latest

version of NI-DAQmx

NI-DAQmx

http://www.ni.com/downloads/

Measurement & Automation
Explorer (MAX)

Measurement & Automation Explorer (MAX)
is a software you can use to configure and
test the DAQ device before you use it in
Python (or other programming languages).

MAX is included with NI-DAQmx software

With MAX you can make sure your DAQ device works as expected before you start using it in your Python program.
You can use the Test Panels to test your analog and digital inputs and outputs channels.

• Python Library/API for Communication with NI
DAQmx Driver

• Running nidaqmx requires NI-DAQmx or NI-
DAQmx Runtime

• Visit the ni.com/downloads to download the
latest version of NI-DAQmx

• nidaqmx can be installed with pip:
pip install nidaqmx

• https://github.com/ni/nidaqmx-python

nidaqmx Python API

http://www.ni.com/downloads/
https://github.com/ni/nidaqmx-python

nidaqmx Python Package
Installation

I/O Signals

Hans-Petter Halvorsen

https://www.halvorsen.blog

I/O Signals

Using a DAQ device we have 4 options

• Analog Out (Write) - AO

• Analog In (Read) - AI

• Digital Out (Write) - DO

• Digital In (Read) - DI

We will show some basic examples in each of
these categories

I/O Module
Analog Signals

Digital Signals

Analog Sensors
Analog IO

Digital IO

I/O Module

Sensors with Digital Interface (e.g., SPI, I2C)

Analog Input (AI)

Analog Output (AO)

Digital Input (DI)

Digital Output (DO)

0 − 5𝑉 or 0 − 10𝑉

True

False

NI USB-6008

Analog In - AI

Analog Out - AO

Digital Out - DO

Digital In - DI

All Digital Channels can
be configured either to
be Digital Out or Digital In

Analog Out (Write)
import nidaqmx

task = nidaqmx.Task()

task.ao_channels.add_ao_voltage_chan('Dev1/ao0','mychannel',0,5)

task.start()

value = 2

task.write(value)

task.stop()

task.close()

You can, e.g., use a Multimeter in order to check if the the program outputs the correct value

Analog In (Read)
import nidaqmx

task = nidaqmx.Task()

task.ai_channels.add_ai_voltage_chan("Dev1/ai0")

task.start()

value = task.read()

print(value)

task.stop

task.close()

Digital Out (Write)
import nidaqmx

task = nidaqmx.Task()

task.do_channels.add_do_chan("Dev1/port0/line0")

task.start()

value = True

task.write(value)

task.stop

task.close()

value = True value = False

We measure ~5𝑉 using a Multimeter We measure ~0𝑉 using a Multimeter

Digital In (Read)
import nidaqmx

task = nidaqmx.Task()

task.di_channels.add_di_chan("Dev1/port0/line1")

task.start()

value = task.read()

print(value)

task.stop

task.close()

Sensors
and Actuators

Hans-Petter Halvorsen

https://www.halvorsen.blog

Sensors and Actuators

Sensors Actuators

Temperature Sensor

Push Button

Potentiometer

Light Sensor

LED

Motor

Buzzer

Analog/Digital Inputs
Analog/Digital Outputs

Signals from the surroundings Signals to the surroundings

Sensors and Actuators
• A Sensor is a converter that measures a physical size and

converts it to a signal that can be read by an instrument,
data acquisition device, or an Arduino.
Examples: temperature sensor, pressure sensor, etc.

• An Actuator is a kind of motor that moves or controls a
mechanism or system. It is powered by an energy
source, typical electric current, hydraulic fluid pressure,
or air pressure, and converts this energy into motion.
Examples: Engine, Pump, Valve, etc.

Sensors and Actuators

Actuator Sensor

LED
TMP36

Temperature Sensor

LED with Python

Hans-Petter Halvorsen

https://www.halvorsen.blog

Light-Emitting Diode (LED)

Necessary Equipment

• DAQ Device (e.g., USB-6008)

• Breadboard

• LED

• Resistor, 𝑅 = 270Ω

• Wires (Jumper Wires)

LED

[Wikipedia]

Breadboard
A breadboard is used to wire
electric components together

Breadboard Wiring

Make sure not to short-circuit
the components that you
wire on the breadboard

Resistors
Resistance is measured in Ohm (Ω)

Resistors comes in many sizes, e.g., 220Ω , 270Ω,
330Ω, 1kΩm 10kΩ, ...

The resistance can be found using Ohms Law

𝑈 = 𝑅𝐼

Electrical symbol:https://en.wikipedia.org/wiki/Resistor

https://en.wikipedia.org/wiki/Resistor

Resistor Colors

http://www.allaboutcircuits.com/tools/resistor-color-code-calculator/Resistor Calculator:

You can also use a Multimeter

http://www.allaboutcircuits.com/tools/resistor-color-code-calculator/

Why do you need a Resistor?
If the current becomes to large, the LED will be destroyed. To prevent
this to happen, we will use a Resistor to limit the amount of current in
the circuit.

A LED typically need a current like 20mA (can be found in the LED Datasheet).
We use Ohm’s Law:

𝑈 = 𝑅𝐼
Arduino gives U=5V and I=20mA. We then get:

𝑅 =
𝑈

𝐼
The Resistor needed will be 𝑅 =

5𝑉

0.02𝐴
= 250Ω. Resistors with R=250Ω is not so common, so

we can use the closest Resistors we have, e.g., 270Ω

What should be the size of the Resistor?

Wiring

GND

DO

𝑅 = 270Ω

Hardware Setup

DO-0

GND

𝑅 = 270Ω

Python Example

import nidaqmx

task = nidaqmx.Task()

task.do_channels.add_do_chan("Dev1/port0/line0")

task.start()

value = True

task.write(value)

task.stop

task.close()

value = True

value = False

In this basic Example we turn on a LED

Digital Out

Blinking LED
import nidaqmx

import time

task = nidaqmx.Task()

channel = "Dev1/port0/line0"

task.do_channels.add_do_chan(channel)

task.start()

value = True

N = 10

blinktime = 1 #seconds

for k in range(N):

task.write(value)

time.sleep(blinktime)

value = not value

task.stop; task.close()

Digital Out

Brightness
import numpy as np

import nidaqmx

import time

task = nidaqmx.Task()

task.ao_channels.add_ao_voltage_chan('Dev1/ao0’,

'mychannel',0,5)

task.start()

start=0; stop=5.1; step=0.1

brightness = np.arange(start, stop, step)

for brightlevel in brightness:

task.write(brightlevel)

print("brightlevel =", brightlevel, "V")

time.sleep(0.2)

task.write(0)

task.stop; task.close()

The Digital Out (DO) channels are
either False (0V) or True (5V).

To control the Brightness of the
LED we need to use an Analog Out
(AO) channel

In this Example we increase the
Brightness of the LED step by step
from 0V, 0.1V, 0.2V, …5V

Analog Out

TMP36 Temperature
with Python

Hans-Petter Halvorsen

https://www.halvorsen.blog

Necessary Equipment

• PC

• DAQ Module, e.g., USB-6008

• Breadboard

• TMP36

• Wires (Jumper Wires)

TMP36 Temperature

https://learn.adafruit.com/tmp36-temperature-sensor

A Temperature sensor like TM36 use a
solid-state technique to determine the
temperature.

They use the fact as temperature
increases, the voltage across a diode
increases at a known rate.

https://learn.adafruit.com/tmp36-temperature-sensor

Scaling
Convert form Voltage (V) to degrees Celsius

From the Datasheet we have:

(𝑥1, 𝑦1) = (0.75𝑉, 25°𝐶)
(𝑥2, 𝑦2) = (1𝑉, 50°𝐶)

There is a linear relationship between
Voltage and degrees Celsius:

𝑦 = 𝑎𝑥 + 𝑏

We can find a and b using the following
known formula:

𝑦 − 𝑦1 =
𝑦2 − 𝑦1
𝑥2 − 𝑥1

(𝑥 − 𝑥1)

This gives:

𝑦 − 25 =
50 − 25

1 − 0.75
(𝑥 − 0.75)

Then we get the following formula:

𝑦 = 100𝑥 − 50

Wiring

5V

AI0-

AI0+USB-6008
B

read
b

o
ard

TMP36

Hardware Setup

We connect the TMP36 to LabVIEW using a USB DAQ Device from National
Instruments, e.g., USB-6001, USB-6008 or similar. I have used a breadboard for
the wiring.

TMP
36

5V
AI+

AI-

Temperature Sensor - Python
import nidaqmx

task = nidaqmx.Task()

task.ai_channels.add_ai_voltage_chan("Dev1/ai0")

task.start()

voltage = task.read()

print(voltage)

degreesC = 100*voltage - 50

print(degreesC)

task.stop

task.close()

Analog In

Formula converting from
Voltage to Degrees Celsius:

𝑦 = 100𝑥 − 50

In this Example we read
one value from the
sensor and convert
from voltage to degrees
Celsius.

For Loop Example
import nidaqmx

import time

task = nidaqmx.Task()

task.ai_channels.add_ai_voltage_chan("Dev1/ai0")

task.start()

Ts = 2

N = 10

for k in range(N):

voltage = task.read()

degreesC = 100*voltage - 50

print(round(degreesC,1))

time.sleep(Ts)

task.stop

task.close()

Analog In

In this Example we read
data from the sensor
within a For Loop.

P
lo

tt
in

g
Te

m
p

er
at

u
re

 D
at

a import numpy as np

import time

import matplotlib.pyplot as plt

import nidaqmx

Initialize Logging

Tstop = 60 # Logging Time [seconds]

Ts = 2 # Sampling Time [seconds]

N = int(Tstop/Ts)

data = [] # Create Array for storing Temperature Data

Initialize DAQ Device

task = nidaqmx.Task()

task.ai_channels.add_ai_voltage_chan("Dev1/ai0")

task.start()

Start Logging

for k in range(N):

voltage = task.read()

degreesC = 100*voltage - 50

print("T =", round(degreesC,1), "[degC]")

data.append(degreesC)

time.sleep(Ts)

Terminate DAQ Device

task.stop

task.close()

Plotting

t = np.arange(0,Tstop,Ts)

plt.plot(t,data, "-o")

plt.title('Temperature’);plt.xlabel('t [s]')

plt.ylabel('Temp [degC]')

plt.grid()

Tmin = 20; Tmax = 25

plt.axis([0, Tstop, Tmin, Tmax])

plt.show()

In this Example we read data
from the sensor within a For
Loop and Plot the Data using
matplotlib

Lo
gg

in
g

D
at

a
to

 F
ile

import numpy as np

import time

import matplotlib.pyplot as plt

import nidaqmx

Initialize Logging

Tstop = 60 # Logging Time [seconds]

Ts = 2 # Sampling Time [seconds]

N = int(Tstop/Ts)

data = [] # Create Array for storing Temperature Data

Open File

file = open("tempdata.txt", "w")

Initialize DAQ Device

task = nidaqmx.Task()

task.ai_channels.add_ai_voltage_chan("Dev1/ai0")

task.start()

Write Data to File Function

def writefiledata(t, x):

time = str(t)

value = str(round(x, 2))

file.write(time + "\t" + value)

file.write("\n")

Start Logging

for k in range(N):

voltage = task.read()

degreesC = 100*voltage - 50

print("T =", round(degreesC,1), "[degC]")

data.append(degreesC)

writefiledata(k*Ts, round(degreesC,1))

time.sleep(Ts)

Terminate DAQ Device

task.stop

task.close()

Close File

file.close()

Plotting

t = np.arange(0,Tstop,Ts)

plt.plot(t,data, "-o")

plt.title('Temperature')

plt.xlabel('t [s]')

plt.ylabel('Temp [degC]')

plt.grid()

Tmin = 20; Tmax = 28

plt.axis([0, Tstop, Tmin, Tmax])

plt.show()

In this Example we read data from the
sensor within a For Loop and Plot the
Data using matplotlib and Save the
Temperature values to a File as well.

Sensors and Actuators
with Python

Hans-Petter Halvorsen

https://www.halvorsen.blog

Exemplified by using NI USB-6008 I/O Module

Real-Time Plotting
of Data

Hans-Petter Halvorsen

https://www.halvorsen.blog

Real-Time Plotting
Here in this Example we will read the value from the
TMP36 Sensor and Plot the Data in Real-Time

Python Code
This function is called periodically from FuncAnimation

def readdaq(i, xs, ys):

#Read Value from DAQ device

voltage = task.read()

#Convert Voltage to degrees Celsius

degreesC = 100*voltage - 50

temp_c = round(degreesC, 1)

print("Celsius Value:", temp_c)

Add x and y to lists

xs.append(dt.datetime.now().strftime('%H:%M:%S.%f'))

ys.append(temp_c)

Limit x and y lists to 20 items

xs = xs[-20:]; ys = ys[-20:]

Draw x and y lists

ax.clear()

ax.plot(xs, ys)

Format plot

plt.xticks(rotation=45, ha='right')

plt.subplots_adjust(bottom=0.30)

plt.title('Temperature Data')

plt.ylabel('Temperature (deg C)')

Set up plot to call readdaq() function periodically

ani = animation.FuncAnimation(fig, readdaq, fargs=(xs, ys),

interval=1000)

plt.show()

task.stop

import nidaqmx

import datetime as dt

import matplotlib.pyplot as plt

import matplotlib.animation as animation

Create figure for plotting

fig = plt.figure()

ax = fig.add_subplot(1, 1, 1)

xs = []

ys = []

Initialize DAQ device

task = nidaqmx.Task()

task.ai_channels.add_ai_voltage_chan("Dev1/ai0")

task.start

Temperature with
Alarm

Hans-Petter Halvorsen

https://www.halvorsen.blog

Necessary Equipment

• PC
• DAQ Module, e.g., USB-6008
• Breadboard
• TMP36
• LED
• Resistor, 𝑅 = 270Ω
• Wires (Jumper Wires)

TMP36 Wiring

5V

AI0-

AI0+USB-6008
B

read
b

o
ard

TMP36

LED Wiring

GND

DO

𝑅 = 270Ω

Hardware Setup

Python Code
import nidaqmx

import time

Initialize DAQ Device

task_ai = nidaqmx.Task()

task_ai.ai_channels.add_ai_voltage_chan("Dev1/ai0")

task_ai.start()

task_do = nidaqmx.Task()

task_do.do_channels.add_do_chan("Dev1/port0/line0")

task_do.start()

alarmlimit = 24 #degrees Celsius

Ts = 2

N = 10

Start Logging

for k in range(N):

voltage = task_ai.read()

degreesC = 100*voltage - 50

print(round(degreesC,1))

if degreesC >= alarmlimit:

task_do.write(True)

else:

task_do.write(False)

time.sleep(Ts)

Terminate DAQ Device

task_ai.stop; task_ai.close()

task_do.stop; task_do.close()

Temperature > Limit?

LED ONLED OFF

YesNo

Thermistor
with Python

Hans-Petter Halvorsen

https://www.halvorsen.blog

Necessary Equipment

• PC

• DAQ Module, e.g., USB-6008

• Breadboard

• Thermistor

• Resistor 10 kΩ

• Wires (Jumper Wires)

Thermistor

Our Thermistor is a so-called NTC (Negative Temperature Coefficient).
In a NTC Thermistor, resistance decreases as the temperature rises.

There is a non-linear relationship between resistance and excitement. To find the
temperature we can use the following equation (Steinhart-Hart equation):

1

𝑇
= 𝐴 + 𝐵 ln(𝑅) + 𝐶 ln(𝑅) 3 where 𝐴, 𝐵, 𝐶 are constants given below

𝐴 = 0.001129148, 𝐵 = 0.000234125 𝑎𝑛𝑑 𝐶 = 8.76741𝐸 − 08

A thermistor is an electronic component that changes
resistance to temperature - so-called Resistance
Temperature Detectors (RTD). It is often used as a
temperature sensor.

[Wikipedia]

Steinhart-Hart Equation
To find the Temperature we can use Steinhart-Hart Equation:

1

𝑇𝐾
= 𝐴 + 𝐵 ln(𝑅) + 𝐶 ln(𝑅) 3

This gives:

𝑇𝐾 =
1

𝐴 + 𝐵 ln 𝑅 + 𝐶 ln 𝑅 3

Where the Temperature 𝑇𝐾 is in Kelvin
𝐴, 𝐵 𝑎𝑛𝑑 𝐶 are constants

The Temperature in degrees Celsius will then be:

𝑇𝐶 = 𝑇𝐾 − 273.15

𝐴 = 0.001129148,
𝐵 = 0.000234125
𝐶 = 0.0000000876741

Wiring

5V

GND

AI0

𝑅 = 10 𝑘Ω

Thermistor

Hardware Setup

Voltage Divider

[https://en.wikipedia.org/wiki/Voltage_divider]

The wiring is called a “Voltage Divider”:

GND

General Voltage Divider

https://learn.sparkfun.com/tutorials/voltage-dividers/all

Formula:

𝑉𝑜𝑢𝑡 = 𝑉𝑖𝑛
𝑅2

𝑅1 + 𝑅2
𝑅2

𝑅1

𝑉𝑜𝑢𝑡

𝑉𝑖𝑛

+

+
-

-

We want to find 𝑉𝑜𝑢𝑡

https://learn.sparkfun.com/tutorials/voltage-dividers/all

Voltage Divider for our System

𝑉𝑜𝑢𝑡 = 𝑉𝑖𝑛
𝑅𝑡

𝑅0 + 𝑅𝑡

Voltage Divider Equation:

We want to find 𝑅𝑡:

𝑅𝑡

𝑅0 = 10𝑘Ω

𝑉𝑜𝑢𝑡

𝑉𝑖𝑛

+

+
-

-

𝑅𝑡 - 10k Thermistor. This varies with
temperature. From Datasheet we
know that 𝑅𝑡 = 10𝑘Ω @25℃

5𝑉

Steps:
1. We wire the circuit on the Breadboard and connect it to the DAQ device
2. We measure 𝑉𝑜𝑢𝑡 using the DAQ device
3. We calculate 𝑅𝑡 using the Voltage Divider equation
4. Finally, we use Steinhart-Hart equation for finding the Temperature

𝑅𝑡 =
𝑉𝑜𝑢𝑡𝑅0

𝑉𝑖𝑛−𝑉𝑜𝑢𝑡

Python Code
import math as mt

import nidaqmx

Initialization

from nidaqmx.constants import (

TerminalConfiguration)

Voltage Divider

Vin = 5;

Ro = 10000 # 10k Resistor

Steinhart Constants

A = 0.001129148

B = 0.000234125

C = 0.0000000876741

Initialize DAQ Device

task = nidaqmx.Task()

task.ai_channels.add_ai_voltage_chan("Dev1/ai0",

terminal_config=TerminalConfiguration.RSE)

task.start()

Read from DAQ Device

Vout = task.read()

print(Vout)

Calculate Resistance

Rt = (Vout * Ro) / (Vin - Vout)

#Rt = 10000 # Used for Testing. Setting Rt=10k should give TempC=25

Steinhart - Hart Equation

TempK = 1 / (A + (B * mt.log(Rt)) + C * mt.pow(mt.log(Rt),3))

Convert from Kelvin to Celsius

TempC = TempK - 273.15

print(TempC)

task.stop

task.close()

1. Get 𝑉𝑜𝑢𝑡 from the DAQ device

2. Calculate 𝑅𝑡 =
𝑉𝑜𝑢𝑡𝑅0

𝑉𝑖𝑛−𝑉𝑜𝑢𝑡

3. Calculate 𝑇𝐾 =
1

𝐴+𝐵 𝑙𝑛 𝑅𝑡 +𝐶 𝑙𝑛 𝑅𝑡
3

4. Calculate 𝑇𝐶 = 𝑇𝐾 − 273.15

5. Present 𝑇𝐶 in the User Interface

The Code works as follows:

Python Code

import math as mt

Function for finding Temperature in degrees Celsius

def thermistorTemp(Vout):

Voltage Divider

Vin = 5;

Ro = 10000 # 10k Resistor

Steinhart Constants

A = 0.001129148

B = 0.000234125

C = 0.0000000876741

Calculate Resistance

Rt = (Vout * Ro) / (Vin - Vout)

#Rt = 10000 # Used for Testing. Setting Rt=10k should give TempC=25

Steinhart - Hart Equation

TempK = 1 / (A + (B * mt.log(Rt)) + C * mt.pow(mt.log(Rt),3))

Convert from Kelvin to Celsius

TempC = TempK - 273.15

return TempC

import time

import nidaqmx

import thermistor

Initialize DAQ Device

from nidaqmx.constants import (

TerminalConfiguration)

task = nidaqmx.Task()

task.ai_channels.add_ai_voltage_chan("Dev1/ai0",

terminal_config=TerminalConfiguration.RSE)

task.start()

Initialization

Tstop = 60 # Logging Time [seconds]

Ts = 2 # Sampling Time [seconds]

N = int(Tstop/Ts)

for k in range(N):

Read from DAQ Device

Vout = task.read()

TempC = thermistor.thermistorTemp(Vout)

print(round(TempC,1))

time.sleep(Ts)

task.stop

task.close()

thermistor.py

Thermistor Application:

Here, I have made a separate Python function
for the thermistor logic. This makes it easy to
use this part in several Applications.

Light Sensor
with Python

Hans-Petter Halvorsen

https://www.halvorsen.blog

Light Sensor

• Light sensor, Photocell (Photo resistor), LDR
(light-dependent resistor)

• A light sensor / photocell is a sensor used to
detect light.

• The resistance changes with the change in
light intensity

Necessary Equipment

• PC

• DAQ Module, e.g., USB-6008

• Breadboard

• Light Sensor

• Wires (Jumper Wires)

• Resistors, 𝑅 = 10 𝑘Ω

Hardware Setup

𝑅 = 10kΩ

Python Code
import nidaqmx

from nidaqmx.constants import (

TerminalConfiguration)

task = nidaqmx.Task()

task.ai_channels.add_ai_voltage_chan("Dev1/ai0",

terminal_config=TerminalConfiguration.RSE)

task.start()

value = task.read()

print(value)

task.stop

task.close()

Python Code – For Loop
import nidaqmx

import time

from nidaqmx.constants import (

TerminalConfiguration)

task = nidaqmx.Task()

task.ai_channels.add_ai_voltage_chan("Dev1/ai0",

terminal_config=TerminalConfiguration.RSE)

task.start()

N = 60

for k in range(N):

Vout = task.read()

print(Vout)

time.sleep(1)

task.stop

task.close()

Light Sensor Results

• The resistance changes with the
change in light intensity.

• We measure the the voltage (using a
Voltage Divider)

• When the Light Intensity gets Higher,
the Voltage Level gets Higher

0𝑉

5𝑉

Low Light Intensity

High Light Intensity

The Light Sensor has not very high accuracy, but you can
typically use it to automatically turn on a light when it get
dark outside (or inside)

Light Sensor Example

• The Light Sensor has not very high accuracy,
but you can typically use it to automatically
turn on a light when it get dark outside (or
inside)

• In this example we will use a light sensor to
measure the light intensity of the room.
– If it's dark, we will turn on the light (LED)
– If it's bright, we'll turn off the light (LED)

Necessary Equipment
• PC
• DAQ Module, e.g., USB-6008
• Breadboard
• Light Sensor
• Wires (Jumper Wires)
• Resistors

𝑅 = 270Ω
𝑅 = 10𝑘Ω

Hardware Setup

𝑅 = 10kΩ

𝑅 = 270Ω

Python Code
import nidaqmx

import time

from nidaqmx.constants import (

TerminalConfiguration)

task_ai = nidaqmx.Task()

task_ai.ai_channels.add_ai_voltage_chan("Dev1/ai0",

terminal_config=TerminalConfiguration.RSE)

task_ai.start()

task_do = nidaqmx.Task()

task_do.do_channels.add_do_chan("Dev1/port0/line0")

task_do.start()

brightlevel = 0.2

N = 60

for k in range(N):

Vout = task_ai.read()

print(round(Vout,2))

task_do.write(True)

if Vout < brightlevel:

task_do.write(True)

else:

task_do.write(False)

time.sleep(1)

task_do.write(False)

task_ai.stop; task_ai.close()

task_do.stop; task_do.close()

If it's dark, we will turn on the light
(LED)
If it's bright, we'll turn off the light
(LED)

In the Example a the “Bright Level”
is set to 0.2V

This value needs to be adjusted
(“trial and error“) depending on the
use of the application.

Push Button
with Python

Hans-Petter Halvorsen

https://www.halvorsen.blog

Necessary Equipment

• DAQ Device (e.g., USB-6008)

• Breadboard

• Push Button

• Wires (Jumper Wires)

Push Button/Switch
• Pushbuttons or switches connect two

points in a circuit when you press them.
• You can use it to turn on a Light when

holding down the button, etc.

+

-

Battery

Light

Switch (On/Off)

Hardware Setup

GND

DI-0

Using built-in 4.7 kΩ Pull-up Resistor

Hardware Setup
Using external Pull-up Resistor

GND

DI-0

+5V

𝑅 = 10𝑘Ω

Pull-down/Pull-up Resistor
Pull-down Resistor Pull-up Resistor

+5V

GND

DI

Switch

Resistor

+5V

GND

DI

Switch

Resistor

Pull-down Resistor

+5V

GND

DI

Switch

Resistor

• When the pushbutton is open (unpressed)
there is no connection between the two legs
of the pushbutton

• This means the DI pin is connected to ground
through the pull-down resistor and we read a
False (Low).

• When the button is closed (pressed), it
makes a connection between its two legs

• This means the DI pin is connected to +5V, so
then we read True (High).

Pull-down Resistor

+5V

GND

DI

Switch
Open

Resistor

+5V

GND

DI

Resistor

True/HighFalse/Low

Switch
Closed

We Push the Button

Pull-up Resistor
• When the pushbutton is open (unpressed)

there is a connection between 5V and the DI
pin.

• This means the default state is True (High).
• When the button is closed (pressed), the

state goes to False (Low).

+5V

GND

DI

Switch

Resistor

Pull-up Resistor
+5V

GND

DI

Resistor

+5V

GND

DI

Resistor

True/High False/Low

Switch
Open

Switch
Closed

We Push the Button

Pull-down/Pull-up Resistor

Why do we need a pull-up or pull-down resistor in the
circuit?
• If you disconnect the digital I/O pin from everything,

the LED may blink in an irregular way.
• This is because the input is "floating" - that is, it will

randomly return either HIGH or LOW.
• That's why you need a pull-up or pull-down resistor in

the circuit.

Python
import nidaqmx

import time

task_di = nidaqmx.Task()

task_di.di_channels.add_di_chan("Dev1/port0/line0")

task_di.start()

N = 10

for k in range(N):

buttonstate = task_di.read()

if buttonstate != True:

print("The Button is Pushed")

else:

print("Nothing")

time.sleep(1)

task_di.stop

task_di.close()

Here you can do the
magic, e.g., turn on a
light, an engine or what
ever. In this basic
example I just print a
message to the user.

Additional Python Resources

https://www.halvorsen.blog/documents/programming/python/

https://www.halvorsen.blog/documents/programming/python/

Hans-Petter Halvorsen

University of South-Eastern Norway

www.usn.no

E-mail: hans.p.halvorsen@usn.no

Web: https://www.halvorsen.blog

http://www.usn.no/
mailto:hans.p.halvorsen@usn.no
https://www.halvorsen.blog/

